Volterra-type operators from analytic Morrey spaces to Bloch space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted Composition Operators from Analytic Morrey Spaces into Bloch-type Spaces

In this paper, the boundedness and compactness of weighted composition operators from analytic Morrey spaces into Bloch-type spaces and little Bloch-type spaces are studied.

متن کامل

Volterra composition operators from generally weighted Bloch spaces to Bloch-type spaces on the unit ball

Let φ be a holomorphic self-map of the open unit ball B, g ∈ H(B). In this paper, the boundedness and compactness of the Volterra composition operator T g from generally weighted Bloch spaces to Bloch-type spaces are investigated. c ©2012 NGA. All rights reserved.

متن کامل

Generalized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces

Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...

متن کامل

Generalized composition operators from logarithmic Bloch type spaces to Q_K type spaces

In this paper boundedness and compactness of generalized composition oper-ators from logarithmic Bloch type spaces to Q_K type spaces are investigated.

متن کامل

Volterra Composition Operators from F ( p , q , s ) Spaces to Bloch - type Spaces

Let H(B) denote the space of all holomorphic functions on the unit ball B ⊂ Cn. Let φ be a holomorphic self-map of B and g ∈ H(B). In this paper, we investigate the boundedness and compactness of the Volterra composition operator

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Integral Equations and Applications

سال: 2015

ISSN: 0897-3962

DOI: 10.1216/jie-2015-27-2-289